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In this paper we test several different formulas for the computation of the exact
vorticity and angular velocity in certain radially symmetric solutions of the two-
dimensional Navier—Stokes equation in vorticity-stream function form. The class
of initial conditions for the vorticity considered here has often been used by many
authors in the study of vortex methods. However, only in the case of zero viscosity has
it been possible to efficiently compute the exact vorticity and velocity at later times.
The expressions for the vorticity and angular velocity, given in this paper, enable
us to compute these quantities both efficiently and highly accurately for nonzero
viscosity. This makes it feasible to obtain reliable error measurements in the study
of vortex methods for the Navier—Stokes equatiog.1998 Academic Press

1. INTRODUCTION

In the numerical study of vortex methods for the Euler equations or the Navier—Stc
equations, it is desirable to test the method on problems for which the exact solutic
known, and for which the smoothness of the solution can be chosen arbitrarily. This ene
us to measure the numerical errors exactly, for these test problems, as well as obta
reasonably reliable estimates of the rates of convergence for the vorticity and the velc
In practice, such exact solutions can only be obtained for radially symmetric vorticity
least if we require smooth solutions, either with compact support, or decaying rapidl
infinity. (Note that the Kirchhoff elliptical vortex is an exact solution of the Euler equ
tions, see [4], which is not radially symmetric, but with discontinuous vorticity.) The reac
might argue that it is unsuitable to use radially symmetric vorticity in the numerical stu
of fluid flow, since the convective term vanishes in this case. However, in vortex meth
the convective term is always included in the calculations, even in the cases where
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known to vanish in the exact solution. In fact, the convective term will not vanish nume
cally, but will approach zero as the gridsize tends to zero. For the Euler equations, rac
symmetric vorticity implies that the vorticity is constant in time, and the flow is circulz
In this case, the exact velocity can be obtained as long as the vorticity can be integ
exactly over a disk centered at the origin. The most popular choice for the vorticity is of
form (1 — r?)¥ for r <1 and zero otherwise. This choice has the advantage of being e
to integrate with respect toin the plane, and the smoothness can be easily varied by
choice ofk. For example, Beale and Majda [1] used a vorticity distribution of this form wi
k =3, while the choic& =7, first used by Perlman [8], has subsequently been used by m
researchers. Itis much more difficult to find exact solutions for the Navier—Stokes equati
Two examples where the exact vorticity can be given in closed form are the radially s
metric solutions of Gaussian typer, t) = e */A+4kb /(1 4 4pkt) and Chorin’s periodic
solutionw (X, y, t) = 262"t cogx) cogy) (see [2]). Even though Chorin’s solution is not
radially symmetric, the convective term still vanishes, so both of these solutions also s&
the heat equation. Hence, any linear combination of Gaussian type solutions with diffe
values ofk and Chorin’s periodic solution is also a solution of both the Navier—Stok
equations and the heat equation. From a strictly mathematical point of view, vortex m
ods are not applicable to Chorin’s periodic vorticity distribution, since it does not deca:
infinity. Actually, Chorin used it to test a projection method in [2]. Nevertheless, Fishel
[3] tested her vortex method on precisely this test case, by exploiting the fact that if
uses the initial conditiom (X, y, 0) =2 cogx) cogy) inside the square-27r <x,y <4w
and zero outside, then the exact vorticity is very closed®? cogx) cogly) inside the
smaller squard < x, y < 2, for small values obt. While these analytic exact solutions
are useful in testing vortex methods, and other numerical methods for the Navier—St
equation and the heat equation, it is desirable to test the methods for less smooth i
conditions. In particular, we would like to use the same type of initial condition for t|
vorticity, as the one which is commonly used for Euler’s equation,(ile-,r %)X inside the
unit disk and zero outside. The exact vorticity cannot be expressed in closed form in
case, and was usually considered too expensive to compute at many points, since itwa
given in terms of a double integral in the literature. Therefore, Roberts [9] and Fishe
[3] who studied the discontinuous case= 0, instead measured the error in the secor
moment of the vorticityL (t), given byL (t) = [¢. [X[?w(X, t) dX/ [ @ (X, t) dx, which for
the exact vorticity satisfieks (t) = L (0) + 4vt.

In this paper we find that for any non-negative integer valdetumfth the vorticity and the
angular velocity of the flow can be expressed in terms of convergent series in several diffi
ways. We also find asymptotic expansions for the vorticity and the angular velocity wt
are both very fast to evaluate and highly accurate for small valuets Bfnally, we present
numerical tests of most of these formulas, which show that with an appropriate selec
of formula, according to the values of andr, we have an efficient method of computing
the exact vorticity and velocity for this popular test problem with high accuracy. Some
these formulas were used to calculate the errors in the deterministic vortex method in

2. THE BASIC EQUATIONS

The two-dimensional Navier—Stokes equation in the vorticity stream function fornr
given by

ot +U-Vo =vAow, 1)
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AY = —w, 2)
u= wy, v = _l/fX7 (3)
div(u) = 0, (4)

wheret stands for timey = (u, v) is the velocity vectorx = (X, y) is the position vector,
w is the vorticity,v is the viscosity coefficient, ang is the stream function. If the initial
vorticity is radially symmetric, them - Vo =0, so that (1) reduces to the heat equatior
ie.,

wr

W = VAw = v(w” + r—), (5)
with the initial condition

o, 0 = f(), (6)

wherer = |x|. It is well known that the solution of the initial value problem for the 2-D hez
equation is given by

1 oo oo
a)(x,t):47wt/ / e XYP/@D £ (y) dy. 7

By introducing polar coordinates in (7), and using the integral representation of Be
functions, we find that the solution of (5), (6) is given by

gr2/@t)

ol 1) = 2ut

/ e 0|/ @201)) T (0)p o, ®)
0

wherelg is the modified Bessel function of order 0. Another way of obtaining the vortici
as a single integral is by inverting the Fourier transform of the vorticity in polar coordinat

o, t) = 271/ Jo(rs)sd(s, t)ds = Zn/ Jo(rs)se 'S a(s, 0) ds, 9)

0 0

where we have defined the Fourier transfornmafs
D 0) = = e x|, 0) dx 10
w(lyl,0) = W . _ooe w(|X], 0) dx. (10)

The velocity is obtained by first solving (2) for the stream function and then using (3). Wi
the vorticity is radially symmetric, so is the stream function. Therefore (2) can be rewrit
as

ry'(r) = —ro, (11)

from which we obtain

(U, v) = p(r, =y, x), (12)
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whereu (r, t) is the angular velocity given by

u(r,t) =i2/ sw(s, t)ds. (13)
r<.Jo

Theparticle trajectories(x(t), y(t)) can now be expressed as

X(t) = x(0) cogo(r, t)) — y(0) sin@(r, t)), (14)
y(t) = x(0)sin(0(r, t)) + y(0) cogo(r, t)), (15)
where
t
o(r,t) = / w(r,s)ds. (16)
0

As we shall see, it will be possible to obtain exact expressions fort) and w(r, t) in
terms of several different convergent series and also in terms of asymptotic expansior
smallvt. While it seems impossible to integrate (16) analytically, this doesn’t matter mt
in practice since normally « 1, so thatu(r, t) varies very slowly with time. Therefore
(16) can be integrated numerically to extremely high accuracy using a high order met
even with quite large time steps, so in practice we are able to calculate the trajectories
and (15) to any desired accuracy.

3. VORTICITY

In this paper, we will consider initial conditions of the form

r,0) = (1 —r?)k forr <1,
w(r,0) = ( ) =< 17)
=0 forr > 1.
This type of initial conditions has been used by several authors in the study of vo
methods, including Periman [8], Beale and Majda [1], Fishelov [3], Russo and Strain [:
Strain [11], and Nordmark [6, 7]. However, since

an _ a4 _2n_n PN N
r=1- r))-Z(i)< D'A-r?, (18)

i=0

we can generalize the result obtained here to let the vorticity be given by an arbitrary
nomial inr?forr < 1. Furthermore, thanks to the Weierstrass theorem, we can approxin
any continuous, radially symmetric, initial data with compact support by a polynomial
r2 with a uniform error less than ary> 0. Itis easy to show that then the error at any late
time will also be less thaa. In practice, however, such a polynomial will be of reasonabl
low degree only iff (r) is a smooth function of2. With the initial condition (17), (8)
becomes

e—rz/(4vt)

o 1) = 2vt

1
/ e_pz/(4vt) |0(l‘p/(2vt))(l _ pz)kp d,O (19)
0
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Although it is possible to evaluate (19) both rapidly and accurately by Gaussian quadra
even for small values aft, care must be taken for such values. This is because the integr
is sharply peaked aroung=r, and is essentially zero outside the intenval 11.,/vt < p
<r +11/vt, whenvt is small. However, if we want to calculate the angular velocity usin
(13), we have to evaluate a double integral, which is more expensive to do numericall
better way is to express the vorticity as a series, which can then be integrated term by
to obtain the angular velocity as a series as well. It turns out that this can be done in se
different ways. Asymptotic expansions can also be found. By settirgr2p?/(4v?t?),
(19) becomes

vte—rz/(4ut) r2/4v2t2 )
o, t) = T/ e "W (1 — 4%t2u/r?)k Io(v/u) du. (20)
0

The first series for the vorticity is obtained by repeated integrations by parts in (20), o
using Sonine’s first integral [12, p. 373]

(n—=1!

(1) = (dub)ke”CHH/@D {7 gy

n=k+1

r="1a(r/(2uvt)). (21)

To prove the convergence of (21), and to estimate the number of terms needed for an ac
evaluation, we need a bound for modified Bessel functions. Using the integral represent

_ (x/2)" " xcosd i 2v

1, (X) = F(v+1/2)F(1/2)/0 €% sirY 9 do, (22)

see [12, p. 204], we immediately get

2"
10| = */i'x_—/l'), 23)
Hence,
ka—(r? vt)p —n n—k—1~—(r—1)%/(4v

(4ot ke~ HD/@DF =1 (1 /(2vt))(n — 1)! - V(1) (4vt))"K-1le- DY/ @D (24)

(n—1-k)! - dpt(n—1—k)!

Therefore, (21) is majorized bywe ~D*/# times the Taylor series fa@/ ' /(4ut),
and thus converges for all> 0 and rapidly whenut is not small. The remainder term
is bounded bye=( =D/ 4,t)="/n1, which by Stirling’s formula is approximately
el/@ /2rn(4vtn/e)~" for largen. Hence, for small values oft, the number of terms
needed is estimated ley(4vt), since the factofdvtn/e)~" decreases rapidly asncreases
beyonde/(4vt). In practice, fewer terms are needed, although it is often hard to avoid us
too many terms. On the other hand, when 1 andvt is small enough, no term at all in
(21) is needed. In fact, sin¢&,(x)| < €* Vx we have

o0

3 (@vt)ke /@O /o) (D! (Avt)ke D2/ @D i r"(n-1)!

no (n—1-k)! - iy (n—1-k)!
dytke—T—D%/ (@t

_ e forr > 1.

(r — 1)k+1
(25)
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Hence, there is a functiah(vt) such thatw (r, t) is negligible forr > 1 + §(vt), ands (vt)
tendsto zero ag tends to zero. Thisis expected, siagg, 0) is zero for > 1. Forexample,

if we want ten correct decimals, atd< 10 thens(0.001) < 0.32 ands§(0.0001) < 0.11.
On the other hand, if < 1, andvt is small, comparison with the exponential series show
that about/(4vt), terms may be needed to evaluate (21) accurately. This is feasible, s
all terms in (21) are positive, and since Bessel functions satisfy the recursion formula

2nl,
I 1(2) = Inja(@) + 2 Z(Z), (26)

which must be applietbackwards However, a more efficient approach fiok 1 andvt
small is to rewrite (20) as

pter@n [ oo 422\ ¢
w(r,t) = — '/1 e”w“z(l—- = ) lo(+/U) du
0

00 242 k
_ / e—vw/rz<1_4"r; ”) Io(ﬁ)du>. (27)

2/(4v2t2)

The first integral in (27) can be evaluated explicitly (see [12, p. 385]), while the sec
integral in (27) can be integrated by parts repeatedly. We then get

k
o(r,t) = Z L(—4vt)”Ln(—rz/(4vt)) — (—dvt)ke PHD/@

p—rd (k—n)!
5 ;:I Oy ut)), (28)
n=0 ’

whereL, is the Laguerre polynomial of degree We should point out here that the first
sum in (28) is thexactsolution of the two dimensional heat equation with initial conditiol
w(r,0)= (1 —r?k vr. Therefore, we expect this to be a good approximation wheri
andvt is small enough. Using again the bourgl(x)| < e, we get

o oo

. v (n+ k! 12 (n +kj!

(Avt)ke 07 +D/@ UZTrnln(l’/(ZVU) < (Avpe VY@ Z Trn
a n=0

_ (dupke (V@i

It forr < 1.

(29)

Since this bound is identical to the one in (25), exceptithat is replaced by 21, we may
neglect the second sum in (28) wher 1 — §(vt), wheres (vt) is defined as before. On the
other hand, whek > 0, the first sum in (28) becomes arbitrarily large as eith@t tends to
infinity. This effect increases rapidly with increasing valuek.dfor example, ik =7, the
effects of roundoff errors are important when either- 0.1 orr is greater than about 1.7
(using double precision). One may be tempted to always use (28)m#aénsince all but a
finite number of terms are zero in this case, but this will lead to large round-off errorsutvhe
is fairly large. The least favorable case occurs witda smalland +§(vt) <r < 1+438(vt).

In this case either (21) or (28) requires a large number of terms, but both are accure
enough terms are included. An alternative is to use asymptotic expansions, which we
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derive below, but first we shall find three more series representations with the help o
Fourier transform. With the initial condition (17), we have

2K! Jya ()

d)(S, O) = 2 sk+1

(30)
Therefore, (9) becomes
w(r,t) = 2¢k! / e 3o (rs) Ja(s)s ¥ ds. (31)
0

ExpandingJk.1(sS) in its MacLaurin series and using [12, p. 393, (2)], we get from (31)

(—dvt)~ DL (r2/(4vt))
(n+k+ 1)

oo
w(r,t) = —Kle™ /@0y "
n=0

(32)

If we instead expandq(rs) in its Taylor series with respect t&, centered at? = 0 and
r2 = 1, respectively, and integrate term by term, we obtain the corresponding Taylor se
for the vorticity, see [12, pp. 393, 396],

—e VWY Z R (k—n4+1; k42 1/(4vt)r?

_ 1 ’
k+1 & ! (—4vt)n+

o(r,t) = (33)

1 i(1—r2)“2F2((k+n+2)/2,(k+n+3)/2;k+2,k+n+2;—1/(vt))
k14 n!(4vt)n+l ’

(34)

where; F; is the confluent hypergeometric function a#d is a generalized hypergeometric
function. Whem > k, 1Fy(k — n + 1; k 4 2; 1/(4vt)) = LY (1/(4vt)). Otherwise, it
may be expressed as a combination of polynomialstiande' . However, (33) and
(34) are not very useful for computational purposes, and will not be considered further.

shall just note that

2Fa((k+2)/2, (k+3)/2, k+ 2,k 4+ 2; —1/(vt))

o b= Atk + 1) (35)
which fork = 0 reduces to
_ e=Ll@t)
oL 1) = (1-e ZIO(l/(ZUt)))' (36)
Since
= (=Dknixk
La(x) = Z m (37)

k=0

|ILh(X)| is bounded by1+ |x|)". Hence, by comparison with an exponential series, (3.
converge®/x. However, ifx is large compared to, thenL,(x) is dominated by the term
x"/nl. Therefore, ifvut is very small, the series (32) contains very large terms with altern:
ing signs, which makes its evaluation impossible. Indeekl 4f 0, r = 0, andvt = 0.02,
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then the eleventh term is about 20* in absolute value. Then the error in the sum wil
still be less than 10, if we use double precision. However, if we redudeto 0.01, then
the size of the largest term increases to abotit 50°, causing a significant error even in
double precision. Finally, if we taket = 0.005, the largest term is around®20giving a
useless result. If we increakethe limiting value ofvt for which (32) can be used, can be
taken slightly smaller. In particulart = 0.01 is acceptable in double precision foe 7
(see Table 3). Note that whehis large enough, (32) provides the simplest, and as we sh
see in the numerical section, one of the fastest ways of calculating the vorticity.

4. ASYMPTOTIC EXPANSIONS FOR THE VORTICITY

Since the evaluation of the vorticity using either (21) or (28) is relatively slow for sm
vt, in a neighborhood af = 1, we seek an asymptotic expansion. Let

k
) = <1+erf<(1—2r>/<2ﬁ)>> Z _ K -

(—4vt)"Ln(—12/(401)) + (T, 1),
(38)

wherew(r, t) is a correction term which tends to zero @stends to zero. This is mo-
tivated by the facts thaEn 0T n)I( —4vt)"Lo(—r?/(4vt)) is the exact solution of the
two-dimensional heat equation with initial valge — r2)% (r unrestricted), and thatl +
erf((1—r)/(2+/vt))))/2 tends taH (1—r), whereH is the Heaviside function, ag tends to
zero. Plugging (38) into (5), we find thatr’ t) satisfies the inhomogeneous heat equatic

~ ~ (6 —(r—1)2
& — & _r_rze (r—1)%/(4vt)

KL (—4vt)"K (L + 4n)Ln(—12/(4vt)) — 4nLn_y(~ r2/(4vt)))
x D

prd (k —n)!
(39)
We look for aformal series solution of (39)
(r 1)2 /(4vt) X
B = Z(vt)““mq "), (40)

and plug this into (39). This leads to the following sequence of ODEs, with the condit
thatq,(r) is bounded at = 1,

k—n
(1=3r =200)0n (1) + 2r (L=r)gg(r) = =20,y (1) — 2rgy_; (1) — Y (1 +4) dyar?,
=0 (41)
where
C(EAK=D (4!
b2 = o —myr (42)
On2it1=0. (43)

In (41), we takeg_1(r) to be 0. It turns out that the solutiomg(r) of (41), which are
bounded at =1 are polynomials when < k but not whem > k. In the latter casgn(r)
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is a rational function of/r with the form

Pn(/1)
r n+1/2(1 + \/F)2n+l+k

Onik(r) = forn >0, (44)

where thep,'s are polynomials satisfying

(X = D Pr00) + (L + K) o) — (1 + %) (204 ;1 (X) — (=H*k!) =0 (45)
2X(X2 = 1) P, (X) +2(2n 4+ (2n + Kk + D)x — (2n — (K 4 1))X?) pa(x) — ((1 — 2n)?
+ (5 — 3k — 18n + 4nk + 16n?)Xx + (K — 2+ 4n)?x?) pr_1(X) + X(1 + x)(4n — 3
+@n+ 2k —5x)p,_1(X) — (PL+xHpl_x)=0, n>0. (46)

Hence, we get

k
o, 1) ~ (“erf((l—r)/(zm))) L

5 > - 7 CADLa(r 2/(4vt))

(r=1)%/(4vt) t/rn+2pn,
—%(Z()(vt)”“/zq () + (vt) Z(”(l/;) mzﬁ+§f)). (47)

Fork = 0, the situation is simpler, and we can fipg(x) explicitly in terms ofp,_1(x)

Po(X) = 1, (48)
9 1-2n1+2 _ —bn(1 2n
B (X) = (X 4+ X9)Pr_1(X) + ( N) (1 + 2X) Pr—1(X) — ba (14 X) ’ (49)
X—1
where
4N n
@n+1D!(2n - 3)!
bp=1by=— H(Z] —-3)@2j+1) =— o2 =) forn> 2. (50)
For example,
1+ 3x
p1(X) = 1 (51)
9+ 45x + 75x2 + 15x°
p2(X) = 32 , (52)
754 525 + 147¢? + 1893 + 735x* 4 105x°
p3(X) = 128 . (53)
This follows from the fact that fok = 0 we have
_ a—(r24+1)/(4vt)
o (r. 1) = € |1(f/(2vt)). (54)

2vt

If we now differentiate the asymptotic expansion (47), and set it equal to the known asy
totic expansion for-e~ D/ | (1 /(2vt))/(2vt) (see [12, p. 203, (3)]), we obtain (49).
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In general, for any non-negative integer valué af turns out that thek + 1)st derivative of
o with respect ta is given by a single term, but there seems to be no such direct recurs
formula forgn(x) and p,(x) for other values ok. Instead, we set

2(k—n)—1 _ max(k,2n—k—1) _
WO = Y aux and  p0= > X, (55)

i=0

and obtain the following recursion formulas for the coefficients

Cani—1(14 2 +2n) —ay_114i2(141)2

[ - — dni,
! 1+2i !
forn = ,k—1andi =0,...,2k—2n (56)
kl(2a_11+ (—H*K!) iCoj

fori=k+1,...,1 (57)

O 06— DA =+ k! Tk

2(2n —i)eni = ((i — K—4n)2cn_1i-2+ (1 +2i +2i% -k —2ik — 6n — 12in

+ 4kn+16n%)cn_1i_1+ (A +i —2n%ch_1i +2(1—i —k + 2n)cni_2
— 21+ k+2n)cni-1) forn>0andi =0,..., maxk,2n—k —1).
(58

Because of the complexity of the asymptotic expansion, it does not seem possible tc
the remainder term or an error bound. The smallest term can be found numerically v
k, r, andvt are given, so in practice we have to find a range of valuesaoidvt such that
the smallest term is less than the acceptable error. This criterion should only be a guide
since there is no guarantee that the error is smaller than the first neglected term. To be
we should compare the values obtained using the asymptotic expansion with those obt
by using either (21) or (28). We then find that fdr= 0.05 the error is usually considerably
larger than the first term neglected, but when< 0.01 the error is approximately equal
to the first term neglected, while the terms are decreasing. We also find thatforand

vt < 0.01, one term of the last sum in (47) is needed to get an error less tha?) tile

if k=0 five terms are needed. Since largeneans greater smoothness, five terms shou
give an error less than 18 whenvt < 0.01 for anyk. The expansion is obviously not
valid forr =0, so we should avoid using it wheris too close to zero.

5. ANGULAR VELOCITY

The series (21), (28), (33), (34), and (32) can each be integrated according to (13), w
gives us the following formulas for the angular velocity,

1— (Aut)ktle= /@0 570 /(N — 1 —K)Hr "la(r/(2vt))

w0 = 2(k + Dr2 - (59)
Kl (—4vt)" LD (—r2/(4vt))  (—4vt)ktle=(*+D/@n
_Z k—nln+1) 2k + r2
K+ DI (r/2vt
« 30 i . (/200 ©0)

n=0
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_ a %/ @) 0 —n+1)) D 2
1 e/ —k!e‘rz/(‘m)z( 4ot)y~ MO (r /(4vt)), (61)

2(k + Dr2 2n(n + k + 1)!
—e V) L F(k—n+ 1L k42 1/(4t)r

- 2(k+ 1) n§:;) (N + D! (—4vt)n+1 ’ (62)

3 1
2k + Dr2

y Z L—A—-r)™YF((k+n+2)/2, (K+n+3)/2 k+2,k+n+2; 1/(vt))
(n+ D! 4vt)n+t

n=0

(63)
We also obtain the following asymptotic approximation,
()
ur,t) = W, (64)
where
1+ erf((L—r)/2J/v1)
nr.t) ~ 5
1.2 zk: K+ DI =D)LP(—r2/@vt) | 2(k+ e -H7/@
—~ k—n!(n+1) Jr
t/r)+1/2p
e e S

wheregn (r) andh, (r) are polynomials which satisfy the recursion formulas

K0 (D2 /2 4+ 1)XE+2 — 2x gy 1(X) — 20, 4 (X)

= 66
Gn(X) T—x (66)
2X(XPo(X) + (1 + x) g (x
ho(X) = (Xpo(X) + ( )oK ( )) (67)
x—1
hooo = &= 20 + (L =k = 4nx)ha-100 + 2X2Pa 00 + (X + Xhy 100 (68)
x—1
If we set
2(k—n)+1 - max(k+1,2n—k) '
GO0 = >  aeX and  hy)= > yix, (69)
i= i=0
we obtain the following recursion formulas for the coefficients,
oni = oni-1— 21+ 1)an-1i11 +,3ni —2an-1i-1
forn = ,kandi =0,...,2k+1) —2n (70)
2 k+ 1! .
Yoi = Y0i-1— 2C0ji—2 — — . . ) fori=1,...,k+2 (71)

(i—D'2—i+k)!
Yni =K—=1+4Myn_1i1+ 2N —=1—=)¥n-1i + ¥hi-1 — 2Cni—2
forn>0andi =0,..., maxk + 1,2n — k), (72)



SOLUTIONS OF THE NAVIER-STOKES EQUATION 439

where
Bri = Tz fori > 0, (73)
Bro =0 forn > 0, (74)
1
Bo.o = RCTTEETE (75)

6. NUMERICAL RESULTS

We now compare the results of the different ways of calculating the vorticity and angt
velocity, as well as the average CPU time required per function evaluation. We cons
the formulas (19), (21), (28), (32), and (47) to calculate the vorticity and (59), (60), (€
and (64) to calculate the angular velocity. We tiake 7 and three different values of. A
small valuevt =0.0001, an intermediate valu¢ = 0.01, and a “large” valuet = 1. When
vt =0.0001, (32) and (61), i.e., the infinite series of Laguerre polynomials, cannot be
because of the catastrophic round-off errors mentioned earlier. \Wher®.01, all the
above formulas can be used and finally, wher=1 we cannot use the asymptotic ex:
pansions (47) and (64). Since the values of vorticity and angular velocity calculated f
(21) and (59) are accurate for all valuesvwdf we use these as benchmark values. Lool
ing at Table 1, we see that the values of the vorticity obtained using (19), (28), and |
differ very little from those obtained from (21). The difference is less than'®lGex-
cept for (28) wherr > 1.5. This is caused by round-off error in (28) for largeThe
situation is similar for the angular velocity. The evaluation of the integral formula f
the vorticity (19) is made by a 21-point Gaussian quadrature applied to each of
subintervals G p <r andr <p <1 whenr <1, and to the single intervals0p <1
when 1<r <1.1. Whenr > 1.1, the vorticity is negligible, so no calculation is made
in this case. Table 2 gives the CPU time in milliseconds on a SPARCII, for differe
values ofr andvt =0.0001, per evaluation of both vorticity and angular velocity, usin
corresponding pairs of formulas, except in the case of (19), which has no correspon
formula for the angular velocity. Comparing the CPU times for the different methods,
see that the asymptotic expansions are clearly fastest, requiring only at most 0.3 mill
onds per evaluation of vorticity and angular velocity. The evaluation of (19) using Gaus:

TABLE 1
Vorticity Using (19), (21), (28), (47) and Angular Velocity Using (59), (60), (64)
for vt = 0.0001 andk = 7

Difference from (21) using: Difference (59):
w(r,t) wu(r,t)

r (21) (28) (47) (19) (59) (60) (64)

.2 7498069721 —.10-10°* -—.10-10*" .58-101° 4342353714 .16-10°% 16-1071
4 2952293471 .29-10712 .29-10712 29101 2933073978 —.97-10* -.97.10"
.6 .0444363972 —.18-10* -.18-10 -.16-10" .1686280396 .20-10°** .20-10°%
.8 .0008431592 .99-10°%° 99-101%  —.46-10 0976255826 .43-10°%° 43-1071
1.0 .0000000002 —.53-10* —.26-10% .0625000000 .15-107%® .76-10°%
1.2 .0000000000 —.20-10°% .0434027778 —.22-10°%
1.4 .0000000000 —.86-10°*2 .0318877551 —.23-10°%
1.6 .0000000000 —.54-107° .0244140625 —.20-10°%°
1.8 .0000000000 .30-1078 .0192901235 .13-10°°
2.0 .0000000000 .45-10° .0156250000 .21.10°%°

O O o oo
O O o oo o
O O O oo
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TABLE 2
Number of Terms Used and CPU Time per Evaluation of Vorticity and Angular Velocity
for the Different Methods when vt = 0.0001

Using (21) and (59) Using (28), (60) Using (47), (64) Using (19)
# of CPU time # of CPU time # of CPU time # of CPU time
r terms (ms) terms (ms) terms (ms) terms (ms)
2 2832 18.4 8 0.5 16 0.2 42 0.9
A4 2676 17.7 8 0.4 16 0.2 42 1.0
.6 2587 15.8 8 0.4 16 0.2 42 0.9
.8 2549 15.0 8 0.4 16 0.3 42 1.0
1.0 2531 15.4 6913 68.5 16 0.2 21 0.5
1.2 0 0.3 9807 101.1 16 0.3 0 0.0
14 0 0.4 13039 131.8 16 0.2 0 0.0
1.6 0 04 16603 168.9 16 0.3 0 0.0
18 0 0.3 20489 230.9 16 0.2 0 0.0
2.0 0 0.2 24691 223.6 16 0.2 0 0.0

* Only the vorticity is evaluated.

guadrature takes about 1 millisecond whea 1, which is also fast, but only the vorticity
is obtained. We see that (21) and (59) are relatively slow whef since more than 2500
terms are required. On the other hand, when 1.1 the vorticity is less than 189, i.e.,
effectively zero for the accuracy required. Therefore, zero termsin (21) and one termin
are used in this case. Therefore, the CPU time used wheh1 is at most 0.5 milliseconds,
which is due to the overhead of evaluating the error bound (25). If we use (28) and (
the situation is reversed. Very few terms are needed whef, and thousands of terms are
needed for > 1. Hence, by using (28), (60) when< 1 and (21), (59) when > 1, we get

a method which is about as fast as asymptotic expansions exceptlatHowever, even at

r =1 only about 15 milliseconds are required, using (21) and (59). The results$00.01
are givenin Tables 3 and 4. In this case, we may also use the pure Laguerre polynomial :
(32) and (61), which are found to agree very well with the benchmark values. The o

TABLE 3
Vorticity Using (21), (28), (47), (19), and (32) fowt = 0.01 andk = 7

Difference from (21) using:

r w(r,t), (21 (28) (47) 19) (32)

.0 7756721701 0 — a6-10°" 0.58-107*2

2 6148025431 611018 0511078 —0.88- 01718 0.23-10712

A4 .2975834793 —0.89-10°% —0.89-10°% —0.37-10°* 0.19-10°%

.6 .0805564614 -0.17-10% -0.17-10% -0.17-10°*2 -0.32-10%

.8 .0104830715 —0.98-10°% -0.87-10°% 0.15-10°%2 0.53-10°%
1.0 .0005342296 —0.75-10°% 0.17-10°% 0.28-10° -0.17-10°%
1.2 .0000085006 89.101 0.18-10°* -0.12-10°% 0.30-10°%
1.4 .0000000343 @9-10°12 -0.12.10°% -0.92.10° 0.16- 10716
1.6 .0000000000 —0.15-10°% —0.27-10°% -0.32-10°% —0.30-10°%°
1.8 .0000000000 83.10°% —0.57-10% —0.29-10°1% —0.49.10%

2.0 .0000000000 —0.42-107° 0.53-10°8 0 0
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TABLE 4
Angular Velocity Using (59), (60), (64), and (61) fort=0.01 andk=7

Difference from (59) using:

r n(r,t), (59 (60) (64) (61)
.0 .3878360850 0 — Q9.10712
2 3461960550 —0.10- 102 —0.10-10°*2 -0.91-10%
A4 .2510730684 B60-10% 0.56-10°% 0.16-10°*
.6 1581867905 Q9.10°% 0.19-10°% 0.22.10°%
.8 .0966429675 —0.89-10°% —0.82-10°% —0.69-10°%
1.0 .0624706520 -0.25-10% —0.10-10°% 0
1.2 .0434024890 a7-10% 0.30-10°% 0
14 .0318877543 B89-10°1 0 0
1.6 .0244140625 -0.77-10°22 -0.14-10°% 0.47-10712
1.8 .0192901235 @0-101 —0.29-10°% 0.56- 10716
2.0 .0156250000 -0.23-10°%° 0.28-10°% 0

methods considered give equally good results, with the exception of (28), mhdrB.

In Table 5 we see the CPU times required for the different methods, wher®.01. The
asymptotic expansions are again fastest, followed by the expansions in Laguerre po
mials, (32) and (61). Gaussian quadrature again requires about 1 millisecond to calc
the vorticity only. We also see that the benchmark formulas (21), (59) are evaluated n
faster even for <1 since at most 83 terms are now required. We finally consitles 1
(see Table 6). In this caset, is far too large to use asymptotic expansions. We also noti
that the use of the pair (28), (60) results in round-off errors as large gsei@n though
double precision is used. Therefore these formulas are not recommended for such
values ofvt. On the other hand, the other methods agree extremely well with one anot
the difference being less than18. These good methods are all very fast now, requirin
at most 0.7 milliseconds (see Table 7). The expansions in Laguerre polynomials stanc

TABLE 5
Number of Terms Used and CPU Time per Evaluation of Vorticity and Angular Velocity
for the Different Methods when vt = 0.01

Using (21), (59) Using (28), (60) Using (47), (64) Using (32), (61) Using*(19)
# of CPU # of CPU # of CPU # of CPU # of CPU
r terms (ms) terms (ms) terms (ms) terms (ms) terms (ms
2 82 1.6 37 15 20 0.3 77 0.6 42 0.7
4 80 15 57 1.7 20 0.3 75 0.6 42 0.8
.6 77 14 81 2.0 20 0.3 73 0.5 42 0.9
.8 73 14 108 2.2 20 0.3 68 0.5 42 0.9
1.0 67 1.3 138 1.9 20 0.3 63 0.5 21 0.5
1.2 61 1.3 172 2.3 20 0.3 60 0.4 21 0.5
1.4 53 1.1 209 29 20 0.3 52 0.4 21 0.6
1.6 46 1.1 249 3.3 20 0.3 6 0.1 21 0.6
1.8 41 11 292 3.3 20 0.3 6 0.1 21 0.6
2.0 0 0.1 338 34 20 0.3 6 0.1 21 0.6

* Only the vorticity is evaluated.
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forvt=1andk =7

TABLE 6
Vorticity Using (21), (28), (32), (19) and Angular Velocity Using (59), (60), (61)

Difference from (21) using:

Difference from (59):

o(r, 1) wu(r,t)

r (21) (28) (32) (19) (59) (60) (61)
.0 .0304031627 .27-107 .18.-10% 0 0152015814  .13-10°7 0

.2 .0301088259 —.14-10° .18.10% 42.10°%% 0151278779 —.58-10° —.22.1013
4 .0292428013 —.79-10° .17.1012 44.10°% 0149096098 —.35-10° —57-10%
6 .0278544229 —.13-10° .16-1012 .33.10°%5 0145551002 —.52-10° —.19.10
.8 .0260207196 —.22-10° .14.10% .33.10°%% 0140775616 —.95-10° —.13.10
1.0 .0238393418 —.28-10° .12.10%? —22.10'® .0134941806 —.70-10° 31-10°15
1.2 .0214199704 —.13-10% -10-1012 17-10°% 0128249720 —.32-10° —.11-10%
1.4 .0188752591 —.10-10“ .83.10°% .87-10°% 0120915147 —.28-10° —.14.10%
1.6 .0163123370 .49-10° .64-10'° —83.10'® .0113156883 .67-10° .36-10°16
1.8 .0138257399 —.28-10“% .48.10°% 13-10°%5 0105185151 —.52-10° —.11-10%
2.0 .0114923594 —.17-10% .34.10® —.14.10'® .0097191945 —.24.10° 57.10°16

requiring only 0.1 milliseconds

as 0.

. All values less tharr10in absolute value are reported

7. SUMMARY AND CONCLUSIONS

Finally we summarize the ranges of values @indvt for which each pair of expansions
is appropriate.

(1) Equation (21) for the vorticity and (59) for the angular velocity. This pair may |

used for any > 0 and anwt, but it is relatively slow for very small values of andr <1
as a large number of terms are required in this case. Moreover, for small valuie saf

need a subroutine whidhrectly calculates the logarithms of the modified Bessel functior

TABLE 7

Number of Terms Used and CPU Time per Evaluation of Vorticity and Angular Velocity
for the Different Methods whenvt = 1

Using (21) and (59) Using (32), (61) Using (19)
# of CPU time # of CPU time # of CPU time

r terms (ms) terms (ms) terms (ms)

2 19 0.7 10 0.1 42 0.6

4 19 0.7 10 0.1 42 0.6

.6 19 0.7 10 0.1 42 0.6

8 18 0.7 9 0.1 42 0.6
1.0 19 0.7 10 0.1 21 0.4
1.2 18 0.7 10 0.1 21 0.4
14 18 0.7 10 0.1 21 0.4
1.6 18 0.7 10 0.1 21 0.4
1.8 18 0.7 9 0.1 21 0.4
2.0 18 0.7 9 0.1 21 0.4

*Only the vorticity is evaluated.



SOLUTIONS OF THE NAVIER-STOKES EQUATION 443

and gamma function. This is needed to avoid overflow. On the other hand,rwhérand
vt is very small, (21) and (59) agree very well with the initial values and are therefore v
fast to evaluate. As we increasg (21) and (59) become much faster fox 1, as seenin
Tables5and 7.

(2) Equation (28) for the vorticity and (60) for the angular velocity. To be safe fro
large round-off errors, this pair should only be used wheril andvt < 0.1. Itis especially
useful whemr < 1 andvt is so small that the second sum in (28) may be neglected and w|
r =0, in which case (28) and (60) become finite sums. Note, however, that evem wAt&n
(28) and (60) should not be used when> 0.1.

(3) Relation (47) for the vorticity and (64) for the angular velocity, i.e., the asympto
expansions. These are both very accurate and very fastf@randvt less than about 0.01.

(4) Equation (32) for the vorticity and (61) for the angular velocity, i.e., the expansic
in Laguerre polynomials. These are both very accurate and very fastwigegreater than
about 0.01 fok = 7. For smaller values &, the limiting value ofvt is slightly larger, i.e.,
about 0.016 fok = 0. All values ofr > 0 work whenvt is large enough. When=0 and
vt > 0.1, (32) and (61) should be used instead of (28) and (60).

(5) The integral formula (19) for the vorticity. Formula (19) may be evaluated bc
very fast and very accurately using Gaussian quadratupe0 andvt > 0, as long as
we take into account the fact that the integrand is effectively zero outside the inte
[r —11/vt,r + 11/vt] for small values ofvt. The drawback here is that there is nc
analogous formula for the angular velocity.

A general recommendation for building a both efficient and simple algorithm would be
use the asymptotic expansions fdr< 0.016, and the expansions in Laguerre polynomial
for vt > 0.016. In the special cage=0, (28) and (60) should be used far< 0.1. If we
demandten correct decimals, thisis all we need, excegtfdd. The asymptotic expansions
give an error close to.Q - 1071° for some values of whenk =0 andvt =0.016, when
the optimum number of terms are used (i.e., 5—6 terms in this case). This is certainly
enough for most applications, but if even more accuracy is needetl iioa neighborhood
of 0.016, we recommend using the Bessel function series (21) and (59).
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