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In this paper we test several different formulas for the computation of the exact
vorticity and angular velocity in certain radially symmetric solutions of the two-
dimensional Navier–Stokes equation in vorticity-stream function form. The class
of initial conditions for the vorticity considered here has often been used by many
authors in the study of vortex methods. However, only in the case of zero viscosity has
it been possible to efficiently compute the exact vorticity and velocity at later times.
The expressions for the vorticity and angular velocity, given in this paper, enable
us to compute these quantities both efficiently and highly accurately for nonzero
viscosity. This makes it feasible to obtain reliable error measurements in the study
of vortex methods for the Navier–Stokes equation.c© 1998 Academic Press

1. INTRODUCTION

In the numerical study of vortex methods for the Euler equations or the Navier–Stokes
equations, it is desirable to test the method on problems for which the exact solution is
known, and for which the smoothness of the solution can be chosen arbitrarily. This enables
us to measure the numerical errors exactly, for these test problems, as well as obtaining
reasonably reliable estimates of the rates of convergence for the vorticity and the velocity.
In practice, such exact solutions can only be obtained for radially symmetric vorticity, at
least if we require smooth solutions, either with compact support, or decaying rapidly at
infinity. (Note that the Kirchhoff elliptical vortex is an exact solution of the Euler equa-
tions, see [4], which is not radially symmetric, but with discontinuous vorticity.) The reader
might argue that it is unsuitable to use radially symmetric vorticity in the numerical study
of fluid flow, since the convective term vanishes in this case. However, in vortex methods
the convective term is always included in the calculations, even in the cases where it is
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known to vanish in the exact solution. In fact, the convective term will not vanish numeri-
cally, but will approach zero as the gridsize tends to zero. For the Euler equations, radially
symmetric vorticity implies that the vorticity is constant in time, and the flow is circular.
In this case, the exact velocity can be obtained as long as the vorticity can be integrated
exactly over a disk centered at the origin. The most popular choice for the vorticity is of the
form (1− r 2)k for r ≤ 1 and zero otherwise. This choice has the advantage of being easy
to integrate with respect tor in the plane, and the smoothness can be easily varied by the
choice ofk. For example, Beale and Majda [1] used a vorticity distribution of this form with
k= 3, while the choicek= 7, first used by Perlman [8], has subsequently been used by many
researchers. It is much more difficult to find exact solutions for the Navier–Stokes equations.
Two examples where the exact vorticity can be given in closed form are the radially sym-
metric solutions of Gaussian typeω(r, t)= e−kr2/(1+ 4νkt)/(1+ 4νkt) and Chorin’s periodic
solutionω(x, y, t)= 2e−2νt cos(x) cos(y) (see [2]). Even though Chorin’s solution is not
radially symmetric, the convective term still vanishes, so both of these solutions also satisfy
the heat equation. Hence, any linear combination of Gaussian type solutions with different
values ofk and Chorin’s periodic solution is also a solution of both the Navier–Stokes
equations and the heat equation. From a strictly mathematical point of view, vortex meth-
ods are not applicable to Chorin’s periodic vorticity distribution, since it does not decay at
infinity. Actually, Chorin used it to test a projection method in [2]. Nevertheless, Fishelov
[3] tested her vortex method on precisely this test case, by exploiting the fact that if one
uses the initial conditionω(x, y, 0)= 2 cos(x) cos(y) inside the square−2π ≤ x, y≤ 4π
and zero outside, then the exact vorticity is very close to 2e−2νt cos(x) cos(y) inside the
smaller square0≤ x, y≤ 2π , for small values ofνt . While these analytic exact solutions
are useful in testing vortex methods, and other numerical methods for the Navier–Stokes
equation and the heat equation, it is desirable to test the methods for less smooth initial
conditions. In particular, we would like to use the same type of initial condition for the
vorticity, as the one which is commonly used for Euler’s equation, i.e.,(1− r 2)k inside the
unit disk and zero outside. The exact vorticity cannot be expressed in closed form in this
case, and was usually considered too expensive to compute at many points, since it was only
given in terms of a double integral in the literature. Therefore, Roberts [9] and Fishelov
[3] who studied the discontinuous casek = 0, instead measured the error in the second
moment of the vorticityL(t), given byL(t)= ∫R2 |x|2ω(x, t) dx/

∫
R2 ω(x, t) dx, which for

the exact vorticity satisfiesL(t)= L(0)+ 4νt .
In this paper we find that for any non-negative integer value ofk both the vorticity and the

angular velocity of the flow can be expressed in terms of convergent series in several different
ways. We also find asymptotic expansions for the vorticity and the angular velocity which
are both very fast to evaluate and highly accurate for small values ofνt . Finally, we present
numerical tests of most of these formulas, which show that with an appropriate selection
of formula, according to the values ofνt andr , we have an efficient method of computing
the exact vorticity and velocity for this popular test problem with high accuracy. Some of
these formulas were used to calculate the errors in the deterministic vortex method in [7].

2. THE BASIC EQUATIONS

The two-dimensional Navier–Stokes equation in the vorticity stream function form is
given by

ωt + u · ∇ω = ν1ω, (1)
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1ψ = −ω, (2)

u = ψy, v = −ψx, (3)

div(u) = 0, (4)

wheret stands for time,u= (u, v) is the velocity vector,x= (x, y) is the position vector,
ω is the vorticity,ν is the viscosity coefficient, andψ is the stream function. If the initial
vorticity is radially symmetric, thenu · ∇ω= 0, so that (1) reduces to the heat equation,
i.e.,

ωt = ν1ω = ν
(
ωrr + ωr

r

)
, (5)

with the initial condition

ω(r, 0) = f (r ), (6)

wherer = |x|. It is well known that the solution of the initial value problem for the 2-D heat
equation is given by

ω(x, t) = 1

4πνt

∫ ∞
−∞

∫ ∞
−∞

e−|x−y|2/(4νt) f (y) dy. (7)

By introducing polar coordinates in (7), and using the integral representation of Bessel
functions, we find that the solution of (5), (6) is given by

ω(r, t) = e−r 2/(4νt)

2νt

∫ ∞
0

e−ρ
2/(4νt) I0(rρ/(2νt)) f (ρ)ρ dρ, (8)

whereI0 is the modified Bessel function of order 0. Another way of obtaining the vorticity
as a single integral is by inverting the Fourier transform of the vorticity in polar coordinates.

ω(r, t) = 2π
∫ ∞

0
J0(rs)sω̂(s, t) ds= 2π

∫ ∞
0

J0(rs)se−νts2
ω̂(s, 0) ds, (9)

where we have defined the Fourier transform ofω as

ω̂(|γ |, 0) = 1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

e−x·γ ω(|x|, 0) dx. (10)

The velocity is obtained by first solving (2) for the stream function and then using (3). When
the vorticity is radially symmetric, so is the stream function. Therefore (2) can be rewritten
as

(rψ ′(r ))′ = −rω, (11)

from which we obtain

(u, v) = µ(r, t)(−y, x), (12)
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whereµ(r, t) is the angular velocity given by

µ(r, t) = 1

r 2

∫ r

0
sω(s, t) ds. (13)

Theparticle trajectories(x(t), y(t)) can now be expressed as

x(t) = x(0) cos(θ(r, t))− y(0) sin(θ(r, t)), (14)

y(t) = x(0) sin(θ(r, t))+ y(0) cos(θ(r, t)), (15)

where

θ(r, t) =
∫ t

0
µ(r, s) ds. (16)

As we shall see, it will be possible to obtain exact expressions forω(r, t) andµ(r, t) in
terms of several different convergent series and also in terms of asymptotic expansions for
smallνt . While it seems impossible to integrate (16) analytically, this doesn’t matter much
in practice since normallyν¿ 1, so thatµ(r, t) varies very slowly with time. Therefore
(16) can be integrated numerically to extremely high accuracy using a high order method,
even with quite large time steps, so in practice we are able to calculate the trajectories (14)
and (15) to any desired accuracy.

3. VORTICITY

In this paper, we will consider initial conditions of the form

ω(r, 0) = (1− r 2)k for r ≤ 1,

= 0 for r > 1.
(17)

This type of initial conditions has been used by several authors in the study of vortex
methods, including Perlman [8], Beale and Majda [1], Fishelov [3], Russo and Strain [10],
Strain [11], and Nordmark [6, 7]. However, since

r 2n = (1− (1− r 2))n =
n∑

i=0

(
n

i

)
(−1)i (1− r 2)i , (18)

we can generalize the result obtained here to let the vorticity be given by an arbitrary poly-
nomial inr 2 for r ≤ 1. Furthermore, thanks to the Weierstrass theorem, we can approximate
any continuous, radially symmetric, initial data with compact support by a polynomial in
r 2 with a uniform error less than anyε > 0. It is easy to show that then the error at any later
time will also be less thanε. In practice, however, such a polynomial will be of reasonably
low degree only if f (r ) is a smooth function ofr 2. With the initial condition (17), (8)
becomes

ω(r, t) = e−r 2/(4νt)

2νt

∫ 1

0
e−ρ

2/(4νt) I0(rρ/(2νt))(1− ρ2)kρ dρ. (19)
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Although it is possible to evaluate (19) both rapidly and accurately by Gaussian quadrature,
even for small values ofνt , care must be taken for such values. This is because the integrand
is sharply peaked aroundρ= r , and is essentially zero outside the intervalr − 11

√
νt ≤ ρ

≤ r +11
√
νt , whenνt is small. However, if we want to calculate the angular velocity using

(13), we have to evaluate a double integral, which is more expensive to do numerically. A
better way is to express the vorticity as a series, which can then be integrated term by term
to obtain the angular velocity as a series as well. It turns out that this can be done in several
different ways. Asymptotic expansions can also be found. By settingu = r 2ρ2/(4ν2t2),
(19) becomes

ω(r, t) = νte−r 2/(4νt)

r 2

∫ r 2/4ν2t2

0
e−νtu/r 2

(1− 4ν2t2u/r 2)k I0(
√

u) du. (20)

The first series for the vorticity is obtained by repeated integrations by parts in (20), or by
using Sonine’s first integral [12, p. 373]

ω(r, t) = (4νt)ke−(r
2+1)/(4νt)

∞∑
n=k+1

(n− 1)!

(n− 1− k)!
r−n In(r/(2νt)). (21)

To prove the convergence of (21), and to estimate the number of terms needed for an accurate
evaluation, we need a bound for modified Bessel functions. Using the integral representation

Iν(x) = (x/2)ν

0(ν + 1/2)0(1/2)

∫ π

0
ex cosθ sin2ν θ dθ, (22)

see [12, p. 204], we immediately get

|In(x)| ≤
√
π |x/2|nex

(n− 1)!
. (23)

Hence,∣∣∣∣ (4νt)ke−(r
2+1)/(4νt)r−n In(r/(2νt))(n− 1)!

(n− 1− k)!

∣∣∣∣ ≤ √π(1/(4νt))n−k−1e−(r−1)2/(4νt)

4νt (n− 1− k)!
. (24)

Therefore, (21) is majorized by
√
πe−(r−1)2/(4νt) times the Taylor series fore1/(4νt)/(4νt),

and thus converges for allt > 0 and rapidly whenνt is not small. The remainder term
is bounded bye(1−(r−1)2)/(4νt)(4νt)−n/n!, which by Stirling’s formula is approximately
e1/(4νt)

√
2πn(4νtn/e)−n for largen. Hence, for small values ofνt , the number of terms

needed is estimated bye/(4νt), since the factor(4νtn/e)−n decreases rapidly asn increases
beyonde/(4νt). In practice, fewer terms are needed, although it is often hard to avoid using
too many terms. On the other hand, whenr > 1 andνt is small enough, no term at all in
(21) is needed. In fact, since|In(x)| ≤ex ∀x we have∣∣∣∣∣
∞∑

n=k+1

(4νt)ke−(r
2+1)/(4νt)r−n In(r/(2νt))(n−1)!

(n− 1− k)!

∣∣∣∣∣ ≤ (4νt)ke−(r−1)2/(4νt)
∞∑

n=k+1

r−n(n−1)!

(n−1−k)!

= (4νt)ke−(r−1)2/(4νt)k!

(r − 1)k+1
for r > 1.

(25)
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Hence, there is a functionδ(νt) such thatω(r, t) is negligible forr > 1+ δ(νt), andδ(νt)
tends to zero asνt tends to zero. This is expected, sinceω(r, 0) is zero forr ≥ 1. For example,
if we want ten correct decimals, andk≤ 10 thenδ(0.001) < 0.32 andδ(0.0001) < 0.11.
On the other hand, ifr < 1, andνt is small, comparison with the exponential series shows
that aboute/(4νt), terms may be needed to evaluate (21) accurately. This is feasible, since
all terms in (21) are positive, and since Bessel functions satisfy the recursion formula

In−1(z) = In+1(z)+ 2nIn(z)

z
, (26)

which must be appliedbackwards. However, a more efficient approach forr < 1 andνt
small is to rewrite (20) as

ω(r, t) = νte−r 2/(4νt)

r 2

(∫ ∞
0

e−νtu/r 2

(
1− 4ν2t2u

r 2

)k

I0(
√

u) du

−
∫ ∞

r 2/(4ν2t2)

e−νtu/r 2

(
1− 4ν2t2u

r 2

)k

I0(
√

u) du

)
. (27)

The first integral in (27) can be evaluated explicitly (see [12, p. 385]), while the second
integral in (27) can be integrated by parts repeatedly. We then get

ω(r, t) =
k∑

n=0

k!

(k− n)!
(−4νt)nLn(−r 2/(4νt))− (−4νt)ke−(r

2+1)/(4νt)

×
∞∑

n=0

(n+ k)!

n!
r n In(r/(2νt)), (28)

whereLn is the Laguerre polynomial of degreen. We should point out here that the first
sum in (28) is theexactsolution of the two dimensional heat equation with initial condition
ω(r, 0)= (1− r 2)k ∀r . Therefore, we expect this to be a good approximation whenr < 1
andνt is small enough. Using again the bound|In(x)| ≤ ex, we get∣∣∣∣∣(4νt)ke−(r

2+1)/(4νt)
∞∑

n=0

(n+ k)!

n!
r n In(r/(2νt))

∣∣∣∣∣ ≤ (4νt)ke−(r−1)2/(4νt)

∣∣∣∣∣
∞∑

n=0

(n+ k)!

n!
r n

∣∣∣∣∣
= (4νt)ke−(r−1)2/(4νt)k!

(1− r )k+1
for r < 1.

(29)

Since this bound is identical to the one in (25), except thatr −1 is replaced by 1−r , we may
neglect the second sum in (28) whenr < 1− δ(νt), whereδ(νt) is defined as before. On the
other hand, whenk> 0, the first sum in (28) becomes arbitrarily large as eitherr or t tends to
infinity. This effect increases rapidly with increasing values ofk. For example, ifk= 7, the
effects of roundoff errors are important when eitherνt > 0.1 or r is greater than about 1.7
(using double precision). One may be tempted to always use (28) whenr = 0, since all but a
finite number of terms are zero in this case, but this will lead to large round-off errors whenνt
is fairly large. The least favorable case occurs whenνt is small and 1−δ(νt)< r < 1+δ(νt).
In this case either (21) or (28) requires a large number of terms, but both are accurate if
enough terms are included. An alternative is to use asymptotic expansions, which we will
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derive below, but first we shall find three more series representations with the help of the
Fourier transform. With the initial condition (17), we have

ω̂(s, 0) = 2kk! Jk+1(s)

2πsk+1
. (30)

Therefore, (9) becomes

ω(r, t) = 2kk!
∫ ∞

0
e−νts2

J0(rs)Jk+1(s)s
−k ds. (31)

ExpandingJk+1(s) in its MacLaurin series and using [12, p. 393, (2)], we get from (31)

ω(r, t) = −k!e−r 2/(4νt)
∞∑

n=0

(−4νt)−(n+1)Ln(r 2/(4νt))

(n+ k+ 1)!
. (32)

If we instead expandJ0(rs) in its Taylor series with respect tor 2, centered atr 2 = 0 and
r 2 = 1, respectively, and integrate term by term, we obtain the corresponding Taylor series
for the vorticity, see [12, pp. 393, 396],

ω(r, t) = −e−1/(4νt)

k+ 1

∞∑
n=0

1F1(k− n+ 1; k+ 2; 1/(4νt))r 2n

n!(−4νt)n+1
, (33)

= 1

k+ 1

∞∑
n=0

(1− r 2)n2F2((k+ n+ 2)/2, (k+ n+ 3)/2; k+ 2, k+ n+ 2;−1/(νt))

n!(4νt)n+1
,

(34)

where1F1 is the confluent hypergeometric function and2F2 is a generalized hypergeometric
function. Whenn> k, 1F1(k − n + 1; k + 2; 1/(4νt)) = L(k+1)

n−k−1(1/(4νt)). Otherwise, it
may be expressed as a combination of polynomials inνt ande1/(4νt). However, (33) and
(34) are not very useful for computational purposes, and will not be considered further. We
shall just note that

ω(1, t) = 2F2((k+ 2)/2, (k+ 3)/2; k+ 2, k+ 2;−1/(νt))

4νt (k+ 1)
, (35)

which fork = 0 reduces to

ω(1, t) = (1− e−1/(2νt) I0(1/(2νt)))

2
. (36)

Since

Ln(x) =
n∑

k=0

(−1)kn!xk

(k!)2(n− k)!
, (37)

|Ln(x)| is bounded by(1+ |x|)n. Hence, by comparison with an exponential series, (32)
converges∀x. However, ifx is large compared ton, thenLn(x) is dominated by the term
xn/n!. Therefore, ifνt is very small, the series (32) contains very large terms with alternat-
ing signs, which makes its evaluation impossible. Indeed, ifk = 0, r = 0, andνt = 0.02,
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then the eleventh term is about 3· 104 in absolute value. Then the error in the sum will
still be less than 10−10, if we use double precision. However, if we reduceνt to 0.01, then
the size of the largest term increases to about 5.7 · 109, causing a significant error even in
double precision. Finally, if we takeνt = 0.005, the largest term is around 1020, giving a
useless result. If we increasek, the limiting value ofνt for which (32) can be used, can be
taken slightly smaller. In particular,νt = 0.01 is acceptable in double precision fork = 7
(see Table 3). Note that whenνt is large enough, (32) provides the simplest, and as we shall
see in the numerical section, one of the fastest ways of calculating the vorticity.

4. ASYMPTOTIC EXPANSIONS FOR THE VORTICITY

Since the evaluation of the vorticity using either (21) or (28) is relatively slow for small
νt , in a neighborhood ofr = 1, we seek an asymptotic expansion. Let

ω(r, t) =
(

1+ erf((1− r )/(2
√
νt))

2

) k∑
n=0

k!

(k− n)!
(−4νt)nLn(−r 2/(4νt))+ ω̃(r, t),

(38)

whereω̃(r, t) is a correction term which tends to zero asνt tends to zero. This is mo-
tivated by the facts that

∑k
n=0

k!
(k−n)! (−4νt)nLn(−r 2/(4νt)) is the exact solution of the

two-dimensional heat equation with initial value(1− r 2)k (r unrestricted), and that(1+
erf((1−r )/(2

√
νt))))/2 tends toH(1−r ), whereH is the Heaviside function, asνt tends to

zero. Plugging (38) into (5), we find that ˜ω(r, t) satisfies the inhomogeneous heat equation

ω̃t − ω̃rr − ω̃r

r
= e−(r−1)2/(4νt)

×
k∑

n=0

(−4νt)nk!((1+ 4n)Ln(−r 2/(4νt))− 4nLn−1(−r 2/(4νt)))

(k− n)!
.

(39)

We look for a formalseries solution of (39)

ω̃(r, t) = e−(r−1)2/(4νt)

√
π

∞∑
n=0

(νt)n+(1/2)qn(r ), (40)

and plug this into (39). This leads to the following sequence of ODEs, with the condition
thatqn(r ) is bounded atr = 1,

(1−3r −2nr)qn(r )+ 2r (1− r )q′n(r ) = −2q′n−1(r )− 2rq ′′n−1(r )−
k−n∑
i=0

(1+ 4i ) dn,2i r
2i ,

(41)

where

dn,2i = (−4)nk!(−1)i (i + n)!

i !2n!(k− i − n)!
, (42)

dn,2i+1 = 0. (43)

In (41), we takeq−1(r ) to be 0. It turns out that the solutionsqn(r ) of (41), which are
bounded atr = 1 are polynomials whenn < k but not whenn ≥ k. In the latter caseqn(r )
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is a rational function of
√

r with the form

qn+k(r ) = pn(
√

r )

r n+1/2(1+√r )2n+1+k
for n ≥ 0, (44)

where thepn’s are polynomials satisfying

(x − 1)p′0(x)+ (1+ k)p0(x)− (1+ x)k(2q′k−1(x)− (−4)kk!) = 0 (45)

2x(x2− 1)p′n(x)+ 2(2n+ (2n+ k+ 1)x − (2n− (k+ 1))x2)pn(x)− ((1− 2n)2

+ (5− 3k− 18n+ 4nk+ 16n2)x + (k− 2+ 4n)2x2)pn−1(x)+ x(1+ x)(4n− 3

+ (8n+ 2k− 5)x)p′n−1(x)− (x2(1+ x)2)p′′n−1(x) = 0, n > 0. (46)

Hence, we get

ω(r, t) ∼
(

1+ erf((1− r )/(2
√
νt))

2

) k∑
n=0

k!

(k− n)!
(−4νt)nLn(−r 2/(4νt))

− e−(r−1)2/(4νt)

√
π

(
k−1∑
n=0

(νt)n+1/2qn(r )+ (νt)k
∞∑

n=0

(νt/r )n+1/2 pn(
√

r )

(1+√r )2n+1+k

)
. (47)

Fork = 0, the situation is simpler, and we can findpn(x) explicitly in terms ofpn−1(x)

p0(x) = 1, (48)

pn(x) = (x + x2)p′n−1(x)+ (1− 2n)(1+ 2x)pn−1(x)− bn(1+ x)2n

x − 1
, (49)

where

b0 = 1, bn = 4−n

n!

n∏
j=1

(2 j − 3)(2 j + 1) = − (2n+ 1)!(2n− 3)!

24n−2n!2(n− 2)!
for n ≥ 2. (50)

For example,

p1(x) = 1+ 3x

4
, (51)

p2(x) = 9+ 45x + 75x2+ 15x3

32
, (52)

p3(x) = 75+ 525x + 1470x2+ 1890x3+ 735x4+ 105x5

128
. (53)

This follows from the fact that fork = 0 we have

ωr (r, t) = −e−(r
2+1)/(4νt) I1(r/(2νt))

2νt
. (54)

If we now differentiate the asymptotic expansion (47), and set it equal to the known asymp-
totic expansion for−e−(r

2+1)/(4νt) I1(r/(2νt))/(2νt) (see [12, p. 203, (3)]), we obtain (49).
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In general, for any non-negative integer value ofk, it turns out that the(k+1)st derivative of
ω with respect tor is given by a single term, but there seems to be no such direct recursion
formula forqn(x) and pn(x) for other values ofk. Instead, we set

qn(x) =
2(k−n)−1∑

i=0

an,i x
i and pn(x) =

max(k,2n−k−1)∑
i=0

cn,i x
i , (55)

and obtain the following recursion formulas for the coefficients

an,i = an,i−1(1+ 2i + 2n)− an−1,1+i 2(1+ i )2

1+ 2i
− dn,i ,

for n = 0, . . . , k− 1 andi = 0, . . . ,2k− 2n (56)

c0,i−1 = k!(2ak−1,1+ (−4)kk!)

(i + k)(i − 1)!(1− i + k)!
+ ic0,i

i + k
, for i = k+ 1, . . . ,1 (57)

2(2n− i )cn,i = ((i − k− 4n)2cn−1,i−2+ (1+ 2i + 2i 2− k− 2ik − 6n− 12in

+ 4kn+ 16n2)cn−1,i−1+ (1+ i − 2n)2cn−1,i + 2(1− i − k+ 2n)cn,i−2

− 2(1+k+2n)cn,i−1) for n > 0 andi = 0, . . . ,max(k, 2n− k− 1).

(58)

Because of the complexity of the asymptotic expansion, it does not seem possible to find
the remainder term or an error bound. The smallest term can be found numerically when
k, r , andνt are given, so in practice we have to find a range of values ofr andνt such that
the smallest term is less than the acceptable error. This criterion should only be a guideline,
since there is no guarantee that the error is smaller than the first neglected term. To be safe,
we should compare the values obtained using the asymptotic expansion with those obtained
by using either (21) or (28). We then find that forνt = 0.05 the error is usually considerably
larger than the first term neglected, but whenνt ≤ 0.01 the error is approximately equal
to the first term neglected, while the terms are decreasing. We also find that fork= 7, and
νt ≤ 0.01, one term of the last sum in (47) is needed to get an error less than 10−10, while
if k= 0 five terms are needed. Since largerk means greater smoothness, five terms should
give an error less than 10−10 whenνt ≤ 0.01 for anyk. The expansion is obviously not
valid for r = 0, so we should avoid using it whenr is too close to zero.

5. ANGULAR VELOCITY

The series (21), (28), (33), (34), and (32) can each be integrated according to (13), which
gives us the following formulas for the angular velocity,

µ(r, t) = 1− (4νt)k+1e−(r
2+1)/(4νt)

∑∞
n=k+1(n!/(n− 1− k)!)r−n In(r/(2νt))

2(k+ 1)r 2
, (59)

= 1

2

k∑
n=0

k!(−4νt)nL(1)n (−r 2/(4νt))

(k− n)!(n+ 1)
+ (−4νt)k+1e−(r

2+1)/(4νt)

2(k+ 1)r 2

×
∞∑

n=0

(n+ k+ 1)!r n+1In+1(r/2νt)

n!
, (60)
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= 1− e−r 2/(4νt)

2(k+ 1)r 2
− k!e−r 2/(4νt)

∞∑
n=1

(−4νt)−(n+1)L(1)n−1(r
2/(4νt))

2n(n+ k+ 1)!
, (61)

= −e−1/(4νt)

2(k+ 1)

∞∑
n=0

1F1(k− n+ 1; k+ 2; 1/(4νt))r 2n

(n+ 1)!(−4νt)n+1
, (62)

= 1

2(k+ 1)r 2

×
∞∑

n=0

(1− (1− r 2)n+1)2F2((k+ n+ 2)/2, (k+ n+ 3)/2; k+ 2, k+ n+ 2;−1/(νt))

(n+ 1)!(4νt)n+1
,

(63)

We also obtain the following asymptotic approximation,

µ(r, t) = 1− η(r, t)
2(k+ 1)r 2

, (64)

where

η(r, t) ∼
(

1+ erf((1− r )/(2
√
νt))

2

)

×
(

1− r 2
k∑

n=0

(k+ 1)!(−4νt)nL(1)n (−r 2/(4νt))

(k− n)!(n+ 1)

)
− 2(k+ 1)e−(r−1)2/(4νt)

√
π

×
(

k∑
n=0

(νt)n+1/2gn(r )+ (νt)k+1
∞∑

n=0

(νt/r )n+(1/2)hn(
√

r )

(1+√r )2n+2+k

)
, (65)

wheregn(r ) andhn(r ) are polynomials which satisfy the recursion formulas

gn(x) =
∑k−n

i=0 (dn,2i /2(i + 1))x2i+2− 2xgn−1(x)− 2g′n−1(x)

1− x
, (66)

h0(x) = 2x(xp0(x)+ (1+ x)1+kg′k(x))
x − 1

, (67)

hn(x) = (1− 2n+ (1− k− 4n)x)hn−1(x)+ 2x2 pn(x)+ (x + x2)h′n−1(x)

x − 1
. (68)

If we set

gn(x) =
2(k−n)+1∑

i=0

αn,i x
i and hn(x) =

max(k+1,2n−k)∑
i=0

γn,i x
i , (69)

we obtain the following recursion formulas for the coefficients,

αn,i = αn,i−1− 2(1+ i )αn−1,i+1+ βn,i − 2an−1,i−1

for n = 0, . . . , k andi = 0, . . . ,2(k+ 1)− 2n (70)

γ0,i = γ0,i−1− 2c0,i−2− 2αk,1(k+ 1)!

(i − 1)!(2− i + k)!
for i = 1, . . . , k+ 2 (71)

γn,i = (k− i + 4n)γn−1,i−1+ (2n− 1− i )γn−1,i + γn,i−1− 2cn,i−2

for n > 0 andi = 0, . . . ,max(k+ 1, 2n− k), (72)
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where

βn,i = dn,i−2

i for i > 0, (73)

βn,0 = 0 for n > 0, (74)

β0,0= − 1

2(k+ 1)
. (75)

6. NUMERICAL RESULTS

We now compare the results of the different ways of calculating the vorticity and angular
velocity, as well as the average CPU time required per function evaluation. We consider
the formulas (19), (21), (28), (32), and (47) to calculate the vorticity and (59), (60), (61),
and (64) to calculate the angular velocity. We takek= 7 and three different values ofνt . A
small valueνt = 0.0001, an intermediate valueνt = 0.01, and a “large” valueνt = 1. When
νt = 0.0001, (32) and (61), i.e., the infinite series of Laguerre polynomials, cannot be used
because of the catastrophic round-off errors mentioned earlier. Whenνt = 0.01, all the
above formulas can be used and finally, whenνt = 1 we cannot use the asymptotic ex-
pansions (47) and (64). Since the values of vorticity and angular velocity calculated from
(21) and (59) are accurate for all values ofνt , we use these as benchmark values. Look-
ing at Table 1, we see that the values of the vorticity obtained using (19), (28), and (47)
differ very little from those obtained from (21). The difference is less than 10−10, ex-
cept for (28) whenr > 1.5. This is caused by round-off error in (28) for larger . The
situation is similar for the angular velocity. The evaluation of the integral formula for
the vorticity (19) is made by a 21-point Gaussian quadrature applied to each of two
subintervals 0≤ ρ ≤ r and r ≤ ρ ≤ 1 when r < 1, and to the single intervals 0≤ ρ ≤ 1
when 1≤ r ≤ 1.1. Whenr > 1.1, the vorticity is negligible, so no calculation is made
in this case. Table 2 gives the CPU time in milliseconds on a SPARCII, for different
values ofr andνt = 0.0001, per evaluation of both vorticity and angular velocity, using
corresponding pairs of formulas, except in the case of (19), which has no corresponding
formula for the angular velocity. Comparing the CPU times for the different methods, we
see that the asymptotic expansions are clearly fastest, requiring only at most 0.3 millisec-
onds per evaluation of vorticity and angular velocity. The evaluation of (19) using Gaussian

TABLE 1

Vorticity Using (19), (21), (28), (47) and Angular Velocity Using (59), (60), (64)

for νt = 0.0001 andk = 7

Difference from (21) using: Difference (59):
ω(r, t) µ(r, t)

r (21) (28) (47) (19) (59) (60) (64)

.2 .7498069721 −.10 · 10−11 −.10 · 10−11 .58 · 10−10 .4342353714 .16 · 10−11 .16 · 10−11

.4 .2952293471 .29 · 10−12 .29 · 10−12 .29 · 10−11 .2933073978 −.97 · 10−13 −.97 · 10−13

.6 .0444363972 −.18 · 10−13 −.18 · 10−13 −.16 · 10−11 .1686280396 .20 · 10−14 .20 · 10−14

.8 .0008431592 .99 · 10−15 .99 · 10−15 −.46 · 10−13 .0976255826 .43 · 10−15 .43 · 10−15

1.0 .0000000002 −.53 · 10−14 −.26 · 10−15 0 .0625000000 .15 · 10−15 .76 · 10−16

1.2 .0000000000 −.20 · 10−13 0 0 .0434027778 −.22 · 10−14 0
1.4 .0000000000 −.86 · 10−12 0 0 .0318877551 −.23 · 10−13 0
1.6 .0000000000 −.54 · 10−9 0 0 .0244140625 −.20 · 10−10 0
1.8 .0000000000 .30 · 10−8 0 0 .0192901235 .13 · 10−9 0
2.0 .0000000000 .45 · 10−9 0 0 .0156250000 .21 · 10−10 0



                

440 HENRIK O. NORDMARK

TABLE 2

Number of Terms Used and CPU Time per Evaluation of Vorticity and Angular Velocity

for the Different Methods when νt = 0.0001

Using (21) and (59) Using (28), (60) Using (47), (64) Using (19)∗

# of CPU time # of CPU time # of CPU time # of CPU time
r terms (ms) terms (ms) terms (ms) terms (ms)

.2 2832 18.4 8 0.5 16 0.2 42 0.9

.4 2676 17.7 8 0.4 16 0.2 42 1.0

.6 2587 15.8 8 0.4 16 0.2 42 0.9

.8 2549 15.0 8 0.4 16 0.3 42 1.0
1.0 2531 15.4 6913 68.5 16 0.2 21 0.5
1.2 0 0.3 9807 101.1 16 0.3 0 0.0
1.4 0 0.4 13039 131.8 16 0.2 0 0.0
1.6 0 0.4 16603 168.9 16 0.3 0 0.0
1.8 0 0.3 20489 230.9 16 0.2 0 0.0
2.0 0 0.2 24691 223.6 16 0.2 0 0.0

∗Only the vorticity is evaluated.

quadrature takes about 1 millisecond whenr < 1, which is also fast, but only the vorticity
is obtained. We see that (21) and (59) are relatively slow whenr ≤ 1 since more than 2500
terms are required. On the other hand, whenr ≥ 1.1 the vorticity is less than 10−10, i.e.,
effectively zero for the accuracy required. Therefore, zero terms in (21) and one term in (59)
are used in this case. Therefore, the CPU time used whenr ≥ 1.1 is at most 0.5 milliseconds,
which is due to the overhead of evaluating the error bound (25). If we use (28) and (60),
the situation is reversed. Very few terms are needed whenr < 1, and thousands of terms are
needed forr ≥ 1. Hence, by using (28), (60) whenr < 1 and (21), (59) whenr > 1, we get
a method which is about as fast as asymptotic expansions except atr = 1. However, even at
r = 1 only about 15 milliseconds are required, using (21) and (59). The results forνt = 0.01
are given in Tables 3 and 4. In this case, we may also use the pure Laguerre polynomial series
(32) and (61), which are found to agree very well with the benchmark values. The other

TABLE 3

Vorticity Using (21), (28), (47), (19), and (32) forνt = 0.01 andk = 7

Difference from (21) using:

r ω(r, t), (21) (28) (47) (19) (32)

.0 .7756721701 0 — 0.46 · 10−11 0.58 · 10−12

.2 .6148025431 0.51 · 10−13 0.51 · 10−13 −0.88 · 01−13 0.23 · 10−12

.4 .2975834793 −0.89 · 10−15 −0.89 · 10−15 −0.37 · 10−12 0.19 · 10−13

.6 .0805564614 −0.17 · 10−14 −0.17 · 10−14 −0.17 · 10−12 −0.32 · 10−14

.8 .0104830715 −0.98 · 10−15 −0.87 · 10−15 0.15 · 10−12 0.53 · 10−15

1.0 .0005342296 −0.75 · 10−15 0.17 · 10−15 0.28 · 10−13 −0.17 · 10−15

1.2 .0000085006 0.39 · 10−13 0.18 · 10−14 −0.12 · 10−14 0.30 · 10−16

1.4 .0000000343 0.79 · 10−12 −0.12 · 10−15 −0.92 · 10−15 0.16 · 10−16

1.6 .0000000000 −0.15 · 10−10 −0.27 · 10−14 −0.32 · 10−15 −0.30 · 10−10

1.8 .0000000000 0.83 · 10−10 −0.57 · 10−14 −0.29 · 10−16 −0.49 · 10−14

2.0 .0000000000 −0.42 · 10−9 0.53 · 10−13 0 0
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TABLE 4

Angular Velocity Using (59), (60), (64), and (61) forνt = 0.01 andk = 7

Difference from (59) using:

r µ(r, t), (59) (60) (64) (61)

.0 .3878360850 0 — 0.29 · 10−12

.2 .3461960550 −0.10 · 10−12 −0.10 · 10−12 −0.91 · 10−13

.4 .2510730684 0.50 · 10−15 0.56 · 10−15 0.16 · 10−14

.6 .1581867905 0.19 · 10−15 0.19 · 10−15 0.22 · 10−15

.8 .0966429675 −0.89 · 10−15 −0.82 · 10−15 −0.69 · 10−16

1.0 .0624706520 −0.25 · 10−15 −0.10 · 10−15 0
1.2 .0434024890 0.47 · 10−14 0.30 · 10−15 0
1.4 .0318877543 0.39 · 10−13 0 0
1.6 .0244140625 −0.77 · 10−12 −0.14 · 10−15 0.47 · 10−12

1.8 .0192901235 0.40 · 10−11 −0.29 · 10−15 0.56 · 10−16

2.0 .0156250000 −0.23 · 10−10 0.28 · 10−14 0

methods considered give equally good results, with the exception of (28), whenr ≥ 1.8.
In Table 5 we see the CPU times required for the different methods, whenνt = 0.01. The
asymptotic expansions are again fastest, followed by the expansions in Laguerre polyno-
mials, (32) and (61). Gaussian quadrature again requires about 1 millisecond to calculate
the vorticity only. We also see that the benchmark formulas (21), (59) are evaluated much
faster even forr ≤ 1 since at most 83 terms are now required. We finally considerνt = 1
(see Table 6). In this case,νt is far too large to use asymptotic expansions. We also notice
that the use of the pair (28), (60) results in round-off errors as large as 10−4 even though
double precision is used. Therefore these formulas are not recommended for such large
values ofνt . On the other hand, the other methods agree extremely well with one another,
the difference being less than 10−12. These good methods are all very fast now, requiring
at most 0.7 milliseconds (see Table 7). The expansions in Laguerre polynomials stand out,

TABLE 5

Number of Terms Used and CPU Time per Evaluation of Vorticity and Angular Velocity

for the Different Methods when νt = 0.01

Using (21), (59) Using (28), (60) Using (47), (64) Using (32), (61) Using (19)∗

# of CPU # of CPU # of CPU # of CPU # of CPU
r terms (ms) terms (ms) terms (ms) terms (ms) terms (ms)

.2 82 1.6 37 1.5 20 0.3 77 0.6 42 0.7

.4 80 1.5 57 1.7 20 0.3 75 0.6 42 0.8

.6 77 1.4 81 2.0 20 0.3 73 0.5 42 0.9

.8 73 1.4 108 2.2 20 0.3 68 0.5 42 0.9
1.0 67 1.3 138 1.9 20 0.3 63 0.5 21 0.5
1.2 61 1.3 172 2.3 20 0.3 60 0.4 21 0.5
1.4 53 1.1 209 2.9 20 0.3 52 0.4 21 0.6
1.6 46 1.1 249 3.3 20 0.3 6 0.1 21 0.6
1.8 41 1.1 292 3.3 20 0.3 6 0.1 21 0.6
2.0 0 0.1 338 3.4 20 0.3 6 0.1 21 0.6

∗Only the vorticity is evaluated.
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TABLE 6

Vorticity Using (21), (28), (32), (19) and Angular Velocity Using (59), (60), (61)

for νt = 1 andk = 7

Difference from (21) using: Difference from (59):
ω(r, t) µ(r, t)

r (21) (28) (32) (19) (59) (60) (61)

.0 .0304031627 .27 · 10−7 .18 · 10−12 0 .0152015814 .13 · 10−7 0

.2 .0301088259 −.14 · 10−5 .18 · 10−12 .42 · 10−15 .0151278779 −.58 · 10−6 −.22 · 10−13

.4 .0292428013 −.79 · 10−6 .17 · 10−12 .44 · 10−15 .0149096098 −.35 · 10−6 −.57 · 10−14

.6 .0278544229 −.13 · 10−5 .16 · 10−12 .33 · 10−15 .0145551002 −.52 · 10−6 −.19 · 10−14

.8 .0260207196 −.22 · 10−5 .14 · 10−12 .33 · 10−15 .0140775616 −.95 · 10−6 −.13 · 10−14

1.0 .0238393418 −.28 · 10−5 .12 · 10−12 −.22 · 10−15 .0134941806 −.70 · 10−6 .31 · 10−15

1.2 .0214199704 −.13 · 10−4 ·10 · 10−12 .17 · 10−16 .0128249720 −.32 · 10−5 −.11 · 10−15

1.4 .0188752591 −.10 · 10−4 .83 · 10−13 .87 · 10−16 .0120915147 −.28 · 10−5 −.14 · 10−15

1.6 .0163123370 .49 · 10−5 .64 · 10−13 −.83 · 10−16 .0113156883 .67 · 10−6 .36 · 10−16

1.8 .0138257399 −.28 · 10−4 .48 · 10−13 .13 · 10−15 .0105185151 −.52 · 10−5 −.11 · 10−15

2.0 .0114923594 −.17 · 10−4 .34 · 10−13 −.14 · 10−15 .0097191945 −.24 · 10−5 .57 · 10−16

requiring only 0.1 milliseconds. All values less than 10−17 in absolute value are reported
as 0.

7. SUMMARY AND CONCLUSIONS

Finally we summarize the ranges of values ofr andνt for which each pair of expansions
is appropriate.

(1) Equation (21) for the vorticity and (59) for the angular velocity. This pair may be
used for anyr > 0 and anyνt , but it is relatively slow for very small values ofνt andr ≤ 1
as a large number of terms are required in this case. Moreover, for small values ofνt , we
need a subroutine whichdirectlycalculates the logarithms of the modified Bessel functions

TABLE 7

Number of Terms Used and CPU Time per Evaluation of Vorticity and Angular Velocity

for the Different Methods when νt = 1

Using (21) and (59) Using (32), (61) Using (19)∗

# of CPU time # of CPU time # of CPU time
r terms (ms) terms (ms) terms (ms)

.2 19 0.7 10 0.1 42 0.6

.4 19 0.7 10 0.1 42 0.6

.6 19 0.7 10 0.1 42 0.6

.8 18 0.7 9 0.1 42 0.6
1.0 19 0.7 10 0.1 21 0.4
1.2 18 0.7 10 0.1 21 0.4
1.4 18 0.7 10 0.1 21 0.4
1.6 18 0.7 10 0.1 21 0.4
1.8 18 0.7 9 0.1 21 0.4
2.0 18 0.7 9 0.1 21 0.4

∗Only the vorticity is evaluated.
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and gamma function. This is needed to avoid overflow. On the other hand, whenr > 1 and
νt is very small, (21) and (59) agree very well with the initial values and are therefore very
fast to evaluate. As we increaseνt , (21) and (59) become much faster forr ≤ 1, as seen in
Tables 5 and 7.

(2) Equation (28) for the vorticity and (60) for the angular velocity. To be safe from
large round-off errors, this pair should only be used whenr ≤ 1 andνt ≤ 0.1. It is especially
useful whenr < 1 andνt is so small that the second sum in (28) may be neglected and when
r = 0, in which case (28) and (60) become finite sums. Note, however, that even whenr = 0,
(28) and (60) should not be used whenνt > 0.1.

(3) Relation (47) for the vorticity and (64) for the angular velocity, i.e., the asymptotic
expansions. These are both very accurate and very fast forr > 0 andνt less than about 0.01.

(4) Equation (32) for the vorticity and (61) for the angular velocity, i.e., the expansions
in Laguerre polynomials. These are both very accurate and very fast whenνt is greater than
about 0.01 fork= 7. For smaller values ofk, the limiting value ofνt is slightly larger, i.e.,
about 0.016 fork= 0. All values ofr ≥ 0 work whenνt is large enough. Whenr = 0 and
νt > 0.1, (32) and (61) should be used instead of (28) and (60).

(5) The integral formula (19) for the vorticity. Formula (19) may be evaluated both
very fast and very accurately using Gaussian quadrature∀r ≥ 0 andνt > 0, as long as
we take into account the fact that the integrand is effectively zero outside the interval
[r − 11

√
νt, r + 11

√
νt ] for small values ofνt . The drawback here is that there is no

analogous formula for the angular velocity.

A general recommendation for building a both efficient and simple algorithm would be to
use the asymptotic expansions forνt ≤ 0.016, and the expansions in Laguerre polynomials
for νt ≥ 0.016. In the special caser = 0, (28) and (60) should be used forνt < 0.1. If we
demand ten correct decimals, this is all we need, except fork= 0. The asymptotic expansions
give an error close to 1.0 · 10−10 for some values ofr whenk= 0 andνt = 0.016, when
the optimum number of terms are used (i.e., 5–6 terms in this case). This is certainly good
enough for most applications, but if even more accuracy is needed forνt in a neighborhood
of 0.016, we recommend using the Bessel function series (21) and (59).
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